Metallic electrodes and leads in simultaneous EEG-MRI: specific absorption rate (SAR) simulation studies.

نویسندگان

  • Leonardo M Angelone
  • Andreas Potthast
  • Florent Segonne
  • Sunao Iwaki
  • John W Belliveau
  • Giorgio Bonmassar
چکیده

The purpose of this study was to investigate the changes in specific absorption rate (SAR) in human-head tissues while using nonmagnetic metallic electroencephalography (EEG) electrodes and leads during magnetic resonance imaging (MRI). A realistic, high resolution (1 mm(3)) head model from individual MRI data was adopted to describe accurately thin tissues, such as bone marrow and skin. The RF power dissipated in the human head was evaluated using the FDTD algorithm. Both surface and bird cage coils were used. The following numbers of EEG electrodes/leads were considered: 16, 31, 62, and 124. Simulations were performed at 128 and 300 MHz. The difference in SAR between the electrodes/leads and no-electrodes conditions was greater with the bird cage coil than with the surface coil. The peak 1 g averaged SAR values were highest at 124 electrodes, increasing to as much as two orders of magnitude (x172.3) at 300 MHz compared to the original value. At 300 MHz, there was a fourfold (x3.6) increase of SAR averaged over the bone marrow, and a sevenfold (x7.4) increase in the skin. At 128 MHz, there was a fivefold (x5.6) increase of whole head SAR. Head models were obtained from two different subjects, with an inter-subject whole head SAR variability of 3%. .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Assessment of EEG Electrode Artifacts during EMF Exposure in Human Provocation Studies

The paper presents the numerical evaluation of the electroencephalogram (EEG) electrode artifacts that are caused during exposure to electromagnetic fields (EMF), in volunteers study. The scope of the study is to differentially present the electromagnetic (EM) power absorption and local Specific Absorption Rate (SAR) distribution, with and without the electrodes. Versions of two basic exposure ...

متن کامل

An EEG system with carbon wire electrodes and an anti-polarization circuit for simultaneous EEG-fMRI recording

Background Simultaneous EEG-fMRI (Electroencephalography-functional Magnetic Resonance Imaging) recording offers high temporal resolution electrophysiological recording and high spatial resolution hemodynamic recording from the same experimental runs. Carbon wire electrodes (but not solid electrodes with carbon leads) are suitable for simultaneous EEG-fMRI recording, especially in high field MR...

متن کامل

Feasibility of simultaneous intracranial EEG - fMRI : a safety study

In epilepsy patients who have electrodes implanted in their brains as part of their pre-surgical assessment, simultaneous intracranial EEG and fMRI (icEEG-fMRI) may provide important localising information and improve understanding of the underlying neuropathology. However, patient safety during icEEG-fMRI has not been addressed. Here the potential health hazards associated with icEEG-fMRI were...

متن کامل

Reduced specific absorption rate (SAR) pseudo-continuous arterial spin labeling

Introduction: A reduced specific absorption rate (SAR) version of pseudo-continuous arterial spin labeling (pCASL) pulse sequence (1,2) is designed and implemented. Using a simulation study, a set of pCASL pulse sequence parameters is found that allows reducing the flip angle of pCASL radio frequency (RF) pulses (and consequently SAR) without losing the inversion efficiency. The proposed set of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioelectromagnetics

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2004